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Abstract

Inpart I of thispaper we presentedarcMtectureof NETRA [I]. This paper presentsperformance evaluationof

NETRA using several common vision algorithms. Performance of algorithms when they are mapped on one cluster
is described. It is shown that S1MD, MIMD and systolic algorithms can be easily mapped onto processor clusters,

and almost linear speedups are possible. F¢¢ some algorithms, analytical performance results are compared with
implementation performance results. It is observed that the analysis is very accurate. Performance analysis of paral-
lel algorithms when mapped across clusters is presented. Mappings across clusters iiluswate the importance and use
of shared as well as disuibuted memory in achieving high performance. The parameters for evaluation are derived
from the characteristics of the parallel algorithms, and these parameters are used m evaluate the alternative com-
munication strategies in NETRA. Furthern_re, the effect of communication interference from other processors in

the system on the execution of an algorithm is studied. Using the analysis, performance of many algorithms with
different characteristics is presented. It is observed that ff communication speeds are matched with the computation
speeds, good speedups are possible when algorithms are mapped across clusters.

reseaw.hwu supportedinpanbyNationalAeronauticsandSpace AdministtutiomUnderCo_ract NASA NAG-I-613.
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1. Introduction

In the first part of this paper [1], we described the architecture of NETRA, its features, and presented an

analysis of inter-cluster communication strategies. This paper presents performance evaluation of NETRA using

several common image processing and vision algorithms. The performance of components of NETRA is illustrated

using algorithms with varying characteristics and communication requirements. The results are used to identify the

bottlenecks of NETRA and to suggest methods to improve and refine the architeclar¢.

For each algorithm we present one or more mapping strategies, its performance evaluation, and a discussion

of the results. The algorithms include two-dimensional (2-D) FFT, convolution, separable convolution, hough

transform, sobel edge detection, and median filtering. Some of the algorithms arc part of the Image Understanding

Benchmark presented in [2]. The approach to performance evaluation has been described in the first paper. To

evaluate parallel algorithms on a cluster, we explore alternative mapping strategies, and computation modes. Some

of the algorithms have been implemented on a simulated cluster, and we show thai the analysis provides very accu-

rate re.suits. We also discuss performance of the algorithms when they m-_ mapped across multiple clusters. The

results are used to compare alternative inter-cluster communication strategies.

Table 1 depicts the parameters used for performance evaluation unless specified otherwise. The values of

computation and communication speeds arc chosen to be conservative. We think that much faster processors and

communication links are possible, and available with current technology, and therefore, the performance results

presented in this paper arc conservative. Since the goal is to study the architecture behavior rather than present raw

performance numbers, we have chosen the above parameters.

This paper is organized as follows. Section 2 contains analysis and performance of various algorithms on one

cluster. We show mappings in SIMD as well as MIMD modes. In Section 3 we present implementation results for

Table 1 : Parameters for Performance Evaluation

Total No. of Processors N_

Cluster Size P_

No. of Processors/Port Pp

Image Size NxN

Memory Modules M

Processor Speed

Network Speed (Block Transfer)
Traffic Intensity for

Interference (mxt)

512

8-128

4

512 X 512

128

5 MIPS, 5 MFLOPS

20 Mbytes/Sec.
0.1,0.4,0.8
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four algorithms, two of which (median and sobel) are parts of the Image Understanding Benchmark Algorithms [2],

and note that the analytical results are comparable to the implementation results. Section 4 discusses the perfor-

mance of algorithms when they are mapped across multiple clusters. We present results for both multistage inter-

connection network between cluster processors as well as a global bus interconnection. Finally, in Section 5, sum-

mary are presented. For further details, the reader is referred to [3].

2. Parallel Algorithms on a Cluster

In this section we describe how various algorithms with different characteristics can be mapped onto a proces-

sor clusters The algorithms are classified according to their computation and communication characteristics as well

as their suitability for implementation on SIMD or MIMD architectures. The purpose of this section is manifold :

first, we illustrate how SIMD, systolic, and MIMD type algorithms can be efficiently mapped onto the cluster;

second, how algorithms that need both types of computations can be mapped; and finally, to show how algorithms

from different classes can be mapped onto the cluster. In the evaluation we discuss the computation, communication

and storage requirements for the algorithms.

The following is a brief review of the classes of algorithm categorized according to their communication

requirements, and is presented in [1].

(1) Local Fixed - In these algorithm, the output depends on a small neighborhood of input data in _vhich the

neighborhood size is normally fixed.

(2) Local Varying - Like the local fixed algorithms, the output at each point depends on a small neighborhood of

input data. However, the neighborhood size is an input parameter and is independent of the input image size.

(3) Global Fixed - In such algorithms each output point depends on the entire input image. However, the compu-

tation is normally input data independent.

(4) Global Varying - Unlike global fixed algorithms, in these algorithms the amount of computation and commun-

ication depends on the image input as well as its size. That is, the output may depend on the entire image or

may depend on a part of image.

2.1. 2-D Convolution

2-D Convolution is a Local varying type of algorithm. A 2-D convolution of an NxN image I(ij), 0<=ij<=N,

with a kernel W(i,j), 0<=ij<fw, can be expressed as follows :



m=j+wt2 a-/+wt2
G(i,j)'- _ _ l(n,m)*W((i.+w/2-n)modw,(j+w/2-n)modw)

m-j.-wl2 ami-wl2

In other words, each point in the output is replaced by a weighted sum of a window wxw around it.

The convolution algorithm will illustrate how to map SIMD and systolic algorithms onto a processor cluster

when the number of processors is much smaller than the problem size. The approach to map the algorithm onto a

cluster is to transform 2-D convolution to a i-D convolution by unfolding the window in one dimension, and

without incurring additional steps for unfolding. In other words, the amount of computation in the corresponding

1-D convolution remains the same as that in 2-D convolution. Figure 1 shows a cluster of 64 processors. The inter-

connection between processors shows all the connections required to perform the convolution operation. However,

all the connections are not needed at the same time. We shall observe that only one input and one output connection

is sufficient at any time, and that the flexibility of the crossbar can be used to obtain all the desired intercormections

efficiently.

Each pixel is logically mapped onto a separate processor (as if there were as many processors available as

there are pixels). Actually the image is folded in two dimensions like a torus, and multiple pixels are mapped onto

one processor. For a cluster size P, (assume P = pxp), each processor has M = N2/p pixels in its local memory. In

general, pixel (i,j) ; 0_/.f,.N-I, OSj.f,N-1 is mapped to processor ((i mod p), (j mod p)). Therefore, this mapping

preserves the adjacency of any two pixels even though the image is folded.

Figure 1 shows the flow of the distribution of data for window size 5><5. A small window is embedded in a

larger one and therefore, same connections can be used for a larger window size with the addition of new connec-

tions for extra steps. In other words, all the computations and communication needed in a small window can be

used for a larger window. For example, 5><5window requires all the connections that are required by 3x3 window.

The algorithm performs the convolution by each processor distributing its pixel values to the neighborhood in a

pipefined manner.

In the following algorithm North, South, East and West Neighbors are defined treating the image as a torus.

For a processor POd), N,S,E,W neighbors are defined as follows.

N ---((i-1),j), if(i-j) < 0, then N -- ((i-I + p),j)

S = ((i+l) mod p,j)

E = (i, (j+l) rood p)

W -- (i, (j-l)), if O-l) < O,then W ffi(i, (j-l+p))



J I

5><5window

Figure I : Mapping on the Cluster for Convolution

At any step in the execution of the algorithm, all the processors have the same neighbor connection. For example, at

a given instance, ff processor Pi is connected to Pj such that Pj is the North neighbor of Pi, then all other proces-

sors will also be connected to their north neighbors. Figure 1 shows how processor (3,3)'s values will be distributed.

All the processors follow the same pattern. Note that the above definition of neighbors is for logical neighbors

because it uses pixel adjacency rather than processor adjacency. The above definition does not imply any physical

connections between processors because the connections are programmed according to pixel adjacency.



The algorithm works as follows (Figure 2): The DSP broadcasts the convolution weights to all the processors.

Each processors multiplies its M pixels with the central weight value. In Figure 2 the data values at each processor

are stored in a linear away and subscript (i j) means the data value i in the connection number j. The intermediate

values are stored in the running variable for each of the M pixels. The image is then shifted in a spiral manner (as

shown in Figure 1). If the image is shifted north then the processors now multiply the pixel values with the south

weight This process is repeated w2-1 times, i.e., for each weight The following properties characterize the above

algorithm. First, the mapping is independent of problem or cluster size. That is, the mapping will work for all prob-

lem sizes. Second, the number of times the interconnecfion needs to be changed only depends on the convolution

kernel size. Furthermore, at any time only one input and one output connection is required. By storing the connec-

tion patterns in the crossbar memory the switching time becomes negligible. Third, it is possible to overlap compu-

tation and communication by writing the pixel to the output port as soon as it is multiplied by the appropriate weight

in the current processor. The above algorithm illustrates that SIMD algorithms can be mapped efficiently on to the

processor clusters using the flexibility and programmability of the interconnectlon.

ALGORITHM CONVOLUTION

All the processors work in SIMD lock-step fashion.
DSP broadcasts the convolution kernel.

Set up Connection_array of size wxw in the crossbar memory by choosing.
first wxw connections from the set.

{N,E,S,S ,W.,W,N_I,N,E,E,E,S ,S ,S ,W,W,W,W,N,N,N,N,E,.. }.

For i = 1 to M do (in parallel)

Result(i) := wi,i * data(i)
End For

o

For j = I to wxw do (in parallel)
Set up appropriate connections on the crossbar as follows.

connection(j_ := connection_array(j)
For i = 1 to M do (in parallel)

Send data (pixels) on the output port to the connected

neighbor.
At the same time receive data from its input port.

Result(i) := Result(i) + wi,j * data (i,j)
End for

End for
END CONV()LUTION

Figure 2 : 2-D Convolution



The computation time decreases as the number of processors increases. The communication time per pixel

onlydependson thekernelsize.The followingformulaepresentthecomputationand communicationtimesinterms

The factor t._ denotes the floating point speed of a processors in terms ofof multiplication and addition operations.

its normal insa'uction execution speed.

t_p= 2xgx Np-_xw_

tconvn= ___ >_2

ts_-- W2-1

Figure 3 shows the performance of the 2-D convolution on a processor cluster. The processing time has been

computed assuming a 2 MFLOP processor. The Figure shows two speedup graphs, one with communication overlap

and the other with additive communication. The computation time decreases linearly as the number of processors

increases. The total communication time per processor also decreases linearly, but the communication time per pixel

remains constant. An important observation one can make here is that it is essential that the communication and

Processing
Time(In Secs.)

21)Convolution(Window =

Time

(wcomm

14 8 16 32 64 128

128

64 Speedup

32

16

Number of Processors

Figure 3 : Performance of 2.D Convolution on a Processor Cluster



computation overlap in order to obtain linear speedups. However, if the interconnection speed is not matched with

the computation speed, then overlap will not be possible. Having a fast crossbar without arbitration delays provides

the necessary communication speed to obtain linear speedups. Note that since computation and communication can

overlap, this mapping is also applicable to systolic algorithms.

2.2. Separable Convolution

A two dimensional convolution is separable if it can be replaced by two one dimensional convolutions. The

main advantage of separability is that the computational requirements per pixel are reduced from 2w 2 to 4w. We

illustrate the mapping by giving an MIMD algorithm to run on a cluster.

The data is parat/oned among the processors as follows. Each processor is assigned N /P rows of the da_

Processor Pi gets rows (i-1)><N/P to i><N/P - 1. Each processor computes convolution along the rows using a

window of size w. Once processor Pi finishes convolution along the rows, it needs rows (i-1)_V/P -w/2 to

(i-1)xN/P- l, from processor Pi-l, and similarly , it needs the bottom w/2 rows from i><N/P to

ixN/P + w/2 -1 from processor Pi+l. Therefore, a processor needs to communicate with only two processors to

obtain the desbed intermed/ate data. The boundary processors Po and P,"-I only need to communicate with one

other processor. Note that ff the granule size with each processor is less than w/2 (i.e., N/P < w/2) then the pro-

cessors need to exchange data with the number of processors given below by T_,. Each processor computes convo-

lution along the columns in its granule. The following are computational and communication requirements of the

algorithm.

tftxN 2x4×(w /2+ l )

t_p= p

too,,. = 2><Nxw

The amount of computation per pixel in separable convolution is a function of w for a w>cw kernel unlike in

2-D convolution where it is a function of w 2. The amount of communication in separable convolution is fixed as

shown in Figure 4. Therefore, the speedup is not as much as in the case of 2-D convolution. There are two reasons

for smaller speedup. First, the communication does not reduce with increasing number of processors because each

processor needs to exchange w/2 rows of intermediate results with two adjacent processors. Secondly, since the

computation per pixel itself is small, the communication overhead as a fraction of computation time is large.
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SeparableConvolution(Window= 10x10)
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Figure 4 : Performance of Separable Convolution on a Processor Cluster

2.3. 2-D FFT

2-D FFT is a Global Fixed algorithm. For an image I(k,l), 0<=k,l<=N, the corresponding 2-D FFT is given by

N-1 N-I

F (m,n) = _ _ l (k,l) e -2xj(/m+/')/N, 0<=m,n<=N-1
k,,O i=0

where j = _Zi". A nice property of the 2-D FFT is that it can be computed in two steps : a one dimensional N

point FFT along the rows followed by a one dimensional N point FFT of the columns of row FFT values, or vice

versa. We use this property to map 2-D FFT on the cluster processors. The algorithm consists of three phases : 1-D

FFT computation along rows, transposing the intermediate results and, 1-D FFT along the columns.

Figure 5 describes the algorithm. In the first phase each processors is assigned N/P rows. Let us denote the

sequence of rows with processor Pi as Granule(i). Also, let's divide each granule into P equal blocks of size N2/p 2

as shown in Figure 6. B(i,j) denotes a block of size N2/p 2 with processor Pi • 0<ffij<=P-1. Each processors com-

putes the I-D FFT along the rows of its granule. Then in the second phase, the processors communicate with each

other in the following manner to transpose the intermediate results. A processor Pi sends block B(ij) to processor

Pj for all 0<ffij<=P-1, j_/. Each processor needs to communicate and exchange a block with every other processor

in the cluster. However, by performing the communication systematically, the transpose can be achieved without



any conflicts as described in the algorithm. Finally, each processor computes 1-D FFT along the columns.

ALGORITHM 2.D FFT

Each processor Pi receives granule(i) of rows.

/* The folio "ng2 ription is with respect to processor Pi */

For k = l to M do

compute 1-D FFT of row(k) of granule(i)

For j = 1 to M do (i _ j')
k: i+j modP
connect Pi to Pk

send Block(io3 to Pk
receive Block0,i) from Pt

Fork= 1 toMdo

compute 1-D FFT of row(k) of granule(i)

END 2.D FFT

Figure 5 : 2-D FFT

Image Size : N x N
N

,Block 1"7

I IN/P [ 7' :(0,2} /4' I / P0

I :/7/ i/
I_ _/-TX--_',, ...... -
(2,0) , w/ , . ,-/' ''/' / ' .

The figure shows data exchange

needed to transpose intermediate da_

Figure 6 : An Example of Mapping 2.D FFT onto Four Processors



10

The 1-D FFT of a row of N pixels can be computed[4] The constant of multiplication is 6, i.e., to perform N

point 1-D PFT it takes approximately 6NlogN floating point operations. Therefore, the computation time for the

above algorithm is (for both row and column steps)

12><t/pcN><N><log2N
t_p - p

The communication time to wans_se the intermediate results is

too,,,, = 2×(P-1)><NZ/P 2

and the number of switch settings are, t_ = P-1.

Even though FFT is a Global Fixed algorithm, in the above mapping both the computation and communica-

tion times reduce as the number of wocessors increases. In other words, both computation and communication are

decomposable for parallel processing. Therefore, if the communication is achieved without conflicts (as in our

case), we can obtain linear speedups.

Figure 7 and 8 show the performance of 2-D FFT algorithm on a processor cluster. From Figure 7 we can

observe that almost linear speedup can be obtained. The variation of the communication time as a function of the

number of processors is shown is Figure 8. Note that communication time curve follows the computation time curve

in its shape and the communication is completely decomposable.

o

2A. Hough Transform

Hough u'ansform is used to detect curves ( such as lines, circles, and ellipses) in an input image[5]. The com-

putation is performed in the parameter space of the curve. Consider the example of detecting line segments, com-

putation is performed in the (r,0) parameter space. If there exists a line whose normal distance from the origin is r,

the normal makes an angle 0 with the x-axis then if the point (x,y) lies on that line than the following equation is

satisfied.

• = xcosO + ysin 0

First, r and 0 ate quantized. The quantization depends on how much accuracy is required in the final result. Assume

that the maximum value of r br rm, x maximum value of 0 be 0m_ (generally g). Then if r,_, Oresare the resolu-

tions used for quantizafion, the total number of accumulator cells in the computation are rmax.Omax/r,_s.Or_s, the

number of rows and columns in the accumulator array being Oc = Om,x/Oru and Pc = rm,xlrr_, respectively. The

algorithm involves two major steps. The first step is to accumulate votes in the accumulator array for various digi-

tized • and 0 values. The second step is to compute local maxima in the output of the first step. The first step is
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Figure 7 : Performance of 2-D FFT on a Processor Cluster
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Figure 8 : Communication Time for 2-D FFr on a Processor Cluster

regular and suitable for SIMD implementation. The second step is more suitable for MIMD implementation because

the output is global data dependent. For example, an image containing many lines will result in many more maxima
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than an image containing a few lines, and therefore, the required computation will vary.

Hough transform is Global Varying algorithm. Furthermore, the communication can not be decomposed. We

present two mappings of the Hough transform on the processor cluster. The first mapping divides the input image

into as many granules as the number of available processors. The second mapping divides the the parameters among

the processors. The former is referred to as "data partitioning" and the latter as "parameter partitioning." We discuss

advantages and disadvantages of both the mappings and also compare their computation time, communication time

and memory requirements.

Data Partitioning

Assume that the input image is Nx.N, and to simplify the discussion assume that the number of available pro-

cessors is P _p2. The image is partitioned into N2/p 2 blocks. Processor P(i,j) works on block i*p + j , where

1._,j<_p. Each processor computes the vote count for its part of the image for all quantizafions of 0 values. Figure 9

shows the accumulator array for a processor. Note that each processor has to maintain a complete accumulator array

of size pc×Oc, and update the appropriate vote count computed from its share of the image. The algorithm

ACCUMULATE_COUNT in Figure 9 shows the computation for this step. The computation time to compute the

accumulator array is time taken to perform 2x xJ_0c multiplications, and half as many additions, where f is

the largest fraction of significant pixels in a block and 0c is the number of quantizations for 0. The next step is to

combine the partial results of all the processor to obtain a global accumulator array so that maxima can be deter-

mined. For combining the partial results we propose the tree sum method in which, at each step, twice as many pro-

cessors combine their partial results, therefore requiring 2×logp-1 steps.

02

PC

Accum_array(ij) for one processor

Figure 9 : Accumulator array for Hough Transform
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ALGORITHM ACCUMULATE COUNT

Each processor Pi, I<-A'-_72 d"oes the following (in parallel)
For j ffi I to 0e do

For each (x,y) in the subimage such that (x,y) is significant do
/*significant means black pixel or edge element*/

compute r(Oj) = x cosOj + y sinOj
Accum_array(Oj,r(Oj )/rrts)- Accum_array(Oj,r(Oj )/rr_s) + 1

End For

End For

END AC(_UMULATE_COUNT

Figure 10 : Algorithm to Compute Votes in Hough Transform

The algorithm ACCUMULATE_SUM in Figure 11 performs the merging of partial results. The processors

are numbered from 0 to p2-1. A processor with number k, O_k<-p2-1 corresponds to a processor (ij) such that

kffii*p +j.

Following this step, processor P0 has the entire accumulator sum. The next step is to distribute this global

accumulator sum to all the processors so that computation for local maxima can be performed in parallel. This step

needs only one step. Processor Po broadcasts the entire array to all the processors using the broadcast facility of the

/* Accum_arrayk(i,j) denotes the accumulator cell (i,j)
the Accumulator array of processor k. */

ALGORITHM ACCUMULATE_SUM

For i = 0 2xlog2p-I do

For all processqrs.Pj do in parallel (0_j._o 2-1)
lfj mod 2 '+= = 2' then

Connect P j --> P j-2;
Forkffi 1 to0e do

Forl= 1 tope do

Send Accum arrayj(k,l) Pj_2 _
Accum_arrayj_21(k,l ) := Accum_arrdyj_2,(k,l)

+ Accum_arrayj(k,l)
End For

End-For

End ff
End For

End ffor

END _,CCUMULATE_SUM

Figure 11 : Algorithm to Accumulate the Vote Count
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crossbar. After the broadcast step, each processor performs a search for local maxima on its share of the accumula-

[ p_2" In this algorithm, for each entry in its block of the accumulator array, the processor determinestor rows

whether the entry represents a local maxima.

In summary, the total computation and communication time requirements for the entire hough transform algo-

rithm using the data partitioning are as follows.

top = 3Xt_× ×fX0c + Oc×C×logP + Ocxpcxw2/p 2

where, the first term is for computing the votes, the second term is to sum the accumulator army, and the third

term is for looking for local maxima in a window of size w 2. The communication time for this algorithm is

tco,,_ = (logP +l)xOcxpc

and the number of switch settings are t_ - logP+l.

Unlike 2-D FFT, the communication is not decomposable. In other words, the communication increases as the

number of processors in_ in a cluster. Figure 12 shows the computation and communication time along with

the speedup for hough transform. Even though the computation time for hough transform decreases as the number

of processors increases, the computation is not completely decomposable. The second term (to combine partial

results) of top increases as a log function of the number of processors. Furthermore, the communication overhead

to combine accumulator arrays also increases logarithmically with the number of processors. Consequently, for a

large number of processors, the communication time becomes comparable to the computation time (as shown in

Figure 12), and that results in degradation in the speedup.

Parameter Partitioning

In this mapping, instead of partitioning the data among the processors, the parameters space is partitioned.

Each processor works on the entire image but computes the vote count for only few 0 values. _ach processor com-

putes all p values for its share of 0 values. If there are p 2 processors, then each processor works on n = Oc/p 2

values of 0. There are several advantages to this mapping, both in terms of communication and implementation at

each processor. Vast, when looking for local maxima later, a processor needs to communicate with only two other

processors to obtain the upper and lower boundary rows of the Accumulator array. Second, we introduce additional

data structures to make the search for local maxima efficient, where instead of searching for the local maxima in the
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Figure 12 : Performance of Hough Transform (Data Partitioning)

entire accumulator array, only a fraction indicating possible local maxima need to be searched. Furthermore, the

processor can store sinO, cosO values for its allocated n values of 0 in its registers, since only a few values need to

be stored. This results in saving on local memory access delays which would occur if all quantized sinO and cosO

values are stored with each p_r in its local memory. The algorithm to compute the accumulator array at each

processor is similar to that in the case of data partitioning except that each processor works on the entire image but

only on its own partoftheparameters.

A brief explanation of the algorithm is as follows. In the first step (computing votes), the algorithm computes

value of p for each significant pixel for all 0 values. It then increments the appropriate count in the Accumulator

array. If the count increases beyond a certain threshold value, there exists a possibility of this being a local maxima.

Therefore, another array called the Link array is updated marking this fact. This step reduces the search space

when looking for local maxima since normally a very small fraction of the image conuibutes to lines and entire

Accumulator array need not be searched when looking for local maxima. Once the above computation is finished

for the entire image, processor Pi communicates with Pi+l and Pi-i to obtain the boundary rows of the Accumula-

tor array. Then the local maxima are computed in the Accumulator array using the information available in
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Link_array. There is a need to search only those entries in the Accumulator array for a local maxima which are

marked by the Link_array. The computation, communication and memory requirements for this mapping are as fol-

lows.

t_p-- 3xt_x N--'_-2p2+ l[ x_xO_+
Ocxpcxw2 /p 2

where the first term is for computing the votes and the second term is to for local maxima in a window of size

w 2. The communication time for this algorithm is

tco_._= 2Xpo

and the number of switch settings arc tsw = 2.

The memory requirements of the two panitionings are comparable. For example, for an image size of

512x512, value of pc will typically be 512x_/2", and 0c will be ]80. However, each pixel normally is a byte where

as each accumulator cell is an integer. Assuming a 4 byte integer, in data partitioning a processor has m store the

entire accumulator array of size 521 Kbytes (approximately), and in the second mapping a processor has to store the

entire image (256 K bytes), and its part of the accumulator array.
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Another way in which the parameter partitioning mapping can be performed is as follows. Instead of storing

the image in all the processors, a controller processor, such as a DSP can store the image and broadcast each

significant pixel value and its location while processors compute the votes in an SIMD lock-step fashion. This

results in saving the memory, because now only one processor need store the image. The communication require-

ment for this mapping is f'/,N 2, where f is the fraction of significant pixels. However, the communication can be

overlapped with computation because while processors are computing the vote count for a location in the image, the

next location can be broadcast. Therefore, the time to compute the Accumulator_array in this case will be MAX(top

, Broadcast time for fxN 2 pixels locations).

By using parameter partitioning, the overhead of combining partial results is eliminated, and for each proces-

sor the communication is reduced to exchanging one row of the accumulator array with two other processors. There-

fore, the communication remains constant as the number of processors increases. Figure 13 shows the speedup,

computation time and communication time for hough wansfocm using parameter partitioning. Figure 14 compares

the communication overhead and the speedup for the two types of partitioning. Notice that using parameter parti-

tioning it is possible to obtain almost linear speedup.
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Figure 14 : Comparison of Performance of Parameter Partitioning and Data Partitioning for Hough Transform
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3. Parallel Implementation Results

This section contains implementation of some algorithms on a simulated processor cluster. A cluster was

simulated on an intel iPSC/2 hypercube multiprocessor. The performance results capture all the overheads associ-

ated with parallel programming, and therefore, the results are very accurate. Also, we show through the example of

2-D FFT algorithm that the analysis presented in the previous section is very close to the implementation results. We

present performance results for four algorithms in this section. Two algorithms are 2-D FFT and separable convolu-

tion. The other two algorithms are parts of the Image Understanding Benchmark Algorithms developed by Weems

et al [2]. The two algorithms are sobel edge detection and median filtering. The performance of the algorithms has

been evaluated using the test data provided with the benchmark algorithms [2].

Table 2 shows the performance for separable convolution implementation on a 256:<256 image with window

size 10xl0. The table shows the major computation operations in the algorithm which include floating point opera-

dons as well as integer operations. The fifth column shows the number of times connection in the crossbar needs to

be changed during the algorithm execution, and column 6 contains the rounded value of the amount of data com-

municated in KBytes. The table shows that the communication time is very small compared to the computation time,

and therefore, good speedups are obtained.

3.1. 2-D FFT

A mapping of 2-D FFT has been described in section 2. Figure 15 shows the performance of 2-D FFT on a 16

processor cluster (image size 256x256). Other parameters are the same as given in Table 1. Solid lines in the graph

show the computation times for analysis (symbol +) and implementation. We observe that the analytical results are

very accurate. However, the implementation times are a little more than that given by analysis because implementa-

tion captures the overhead of index management, etc., which is not included in the analysis. The graph also shows

Table 2 : Separable Convolution Implementation Results

No.
Proc.

1
2
4
8

16

Separable Convolution
Window 10xl0

FL Point

K. Ops
3932
1966
983
492
246

Other

K. Ops
3932
1966
983
492
246

Comp.
Time (ms.)

2607
1310
658
332
169

Comm.

Setup
0
2
3
3
3

Comm.

K s tes
0

2O
2O
2O
2O

Comm.

Time(ms.)

0
4.09
4.09
4.09
4.09
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Figure 15 : Performance of 2-D FFT on a cluster (Analysis and Implementation)

the corresponding speedups for both cases. Note that speedups obtained through analysis and implementation are

almost the same and are practically indistinguishable. Figure 16 shows graphs for the communication time. Again,

implementation and analytical results are very close to each other.

3.2. Separable Convolution

3.3. Benchmark Algorithms

The Image Understanding Benchmark provided the serial version of the programs and the data [2]. We

implemented sobel edge detection and median filtering algorithms.

3.3.1. Sobei

Sobel edge detection is a two-dimensional convolution operation with a 3×3 mask. The implementation used

medium grain parallelism in an MIMD mode, and mapping was similar to that of separable convolution. Table 3

illustrates the performance results for sobel edge detection algorithm. There were six data sets but here we present

resnlts using only one data set (test, size 256><256). The results obtained on other data sets were similar. The table
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includes all overheads, including program load time, data load time, data input time (from global memory), and time

to gather results. If all the overhead is included, then the performance for larger cluster size is sublinear. There axe

two main reasons for this performance. First, amount of computation pet pixel is very small (3x3 convolution), and

second, all the overhead is included in the computation of the speedup. The parameters for communication

bandwidth are conservative (20 MBytes/sec.), and if the bandwidth is assumed to be larger, then the performance is

expected to be much better.

Table 3 : Sobel Edge Detection

No. Proc.

1
2
4
8

16
32

Sobei (Test)
Proc.

Time(sec._
4.04
2.02
1.01
0.51
0.26
0.13

Data load

Time(See.)
0
0.056
0.056
0.056
0.056
0.056

Result Output
Time(sec.)

0
0.014
0.014
0.014
0.014
0.014

Prog. Load
Time(sec.)

0
0.001

0.001
0.001
0.001
0001

Data Input
Time(sec.)

0.008
0.008
0.008
0.008
0.008
0.008

Total

Time(sec.)
4.05
2.1
1.09
0.589
0.33
0.21

Speed up

1
1.92
3.70
6.91

12.13
19.71
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3.3.2. Median Filtering

Table 4.4 shows the performance results for the median filtering algorithm. The algorithm was evaluated on

the same data set. Size of the median filter was 5><5.Data is partitioned along the rows. Each processor is allocated

an equal number of rows and two boundary rows in each direction. There is no need for communication during the

algorithm execution. Median filtering does not involve any floating point multiplication or addition operations (only

comparison operations arc needed). Table 4.4 shows that we can obtain good speedups on a cluster for median filter-

ing.

4. Performance of Parallel Algorithms on Multiple Clusters

The extent of inter-claster communication depends on the type of algorithms, how they are mapped in paral-

lel, frequency of communication and amount of data to be communicated. As discussed in the first paper [1], these

requirements vary for algorithms belonging to different classes.

We are mainly interested in the performance evaluation of parallel algorithms when mapped across clusters.

The performance of an algorithm will be affected by interference from other processors in the system which are not

executing the particular algorithm under study.

Consider a parallel execution of an algorithm acrossclusters.Suppose the computation time is tee, intra-

cluster communication time is ta, inter-cluster communication time is t/ct, and the execution time when the algo-

rithm is executed on a single processor is tst¢. Then the speed up in the best case is given by

tstq
Sp = (1)

tcp + td + tict

That is, assuming there is no interference while accessing the network or the global memory. Under the condi-

tions in which there are conflicts while accessing the network, the inter-cluster communication time will be given by

Table 4 : Median Filtering

No. Proc.

1
2
4
8

16
32

Median Filtering (Test)
Proc.

Time(see.)

60.36
30.17
15.19
7.72
3.99
1.90

Data load
Time(See.)

0
0.056
0.056
0.056
0.056
0.O56

Result Output
Time(see.)

0
0.056
0.056
0.056
0.056
0.056

Prog. Load

Time(see.)
0
0.001
0.001
0.001
0.001
0.001

Data Input
Time(see.)

0.008
0.008
0.008
0.008
0.008
0.008

Total
Time(see.)

60.37
30.30
15.31

7.85
4.11
2.02

Speed up

1
1.99
3.94
7.70

14.68
29.93
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w×tid, and therefore, the speed up will be given by

t,_ (2)
Sp" = t,p + ta + wxtla "

Hence, degradation in speed up with respect to the best case speed up will be

Sp - St,'ffi (w-l)xt_t

St, t_, + td + wxt_l
(3)

This section discusses the performance of various algorithms when mapped across clusters. The algorithms

ate selected according to their communication requirements. We have chosen one algorithm from each of the fol-

lowing categories; Local Varying, Global Fixed and Global Varying. Algorithms in each of these categories exhibit

different communication characteristics, and therefore, the analysis will provide the performance of the architecture

for a wide range of algorithms.

4.1. Two-Dimensional Fast Fourier Transform (2.D FFT)

From Section 2 we know that a 2-D FFT can be performed in two steps : a one-dimensional N point FFT

along the rows followed by a one-dimensional N point FFT along the columns, or vice versa. We use this property

to map the algorithm across clusters. Hence, dividing the data along rows will not require communication when

computing one-dimensional FFT. However, communication is needed to obtain Iranspose of the intermediate

results. Figure 17 shows an example of the two steps and communication for three clusters.

N/n

BI2 B13

B21 B23

B31 B32

-_C1

]o___.

B12

B13

B21

B23

B31

B32

: _ B21 B31
_m.,.

: B12 m-- B32

= B13 B23

_C1

(a) Row FFT Co)Transpose (c) Column FFT

using global Memory

The shaded area denotes data which remains within the cluster

Figure 5 : An Example of Mapping 2-D FFT on Three Clusters
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Clusters are allocaw.A rows in proportion to their size. A cluster Ci of size Pc(i) (i.e., containing Pc(i) pro-

NxPc(i)
rows, where n is the total number of clusters executing the algorithm. Within a clus-cessors) is allocated i_

_Pc(i)
i-I

tea"rows are equally divided among processors. In the first phase processors compute N point FFT of all the rows in

their granule. In the second phase, to obtain transpose of the intermediate data, processors write the intermediate

results into the designated global memory locations, which is read by other processors. Data remaining within a

cluster is wansposed using the cluster crossbar.

The computation time in terms of number of insm_cfions is given by the following. The total number of pro-

cessors are given by P, and we assume all clusters have the same size (Pc).

12xN21°g2(N)xt_ (4)
tcp= p

where t_ is the number of insvruction per floating point operation. The intra-cluster communication time (tel) and

the inter-cluster communication time (t/ct) are given by

2xN2(Pc-1) (5)
tel = p2

4xN2x(n-I)xPPxR (6)
ticl=

nxp

wherePp isthenumberofprocessorsperportandR isthecommunicationspeedofthenetworkintermsofnumber

ofinstructions/perwordtransfer.

Usingtheseparametersfor2-D _ trafficintensity,computationtimes,and theparametersfromTableI,we

evaluatetheperformanceusingtheanalysispresentedearlier.Figure18 shows thespeedupobtainedforthe2-D

FFT algorithm.The X-axisshows thenumberofprocessors(clustersizeis16).For example,value48 means that

thealgorithmisexecutedon 3clusters,eachcontaining16procassors.The fourdifferentgraphsintheFigureshow

speedupsforno conflict(tw.stcase),low conflict,medium conflictand highconflictcasesthroughtheglobalinter-

connectionnetwork(multi-stageinterconnection).We willpresentsimilarresultswhen bus isusedas theglobal

intarconnectionnetworklaterinthissection.We observethatspeedupobtainedundervaryingdegreesofconflicts

throughthenetworkiscomparabletothatobtainedinthebestcase.However,thebestcasespeedupitselfisnot

linearbecauseofthedelaysthroughthenetworkand theglobalmemory.
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Figure 18 : Speedup for 2-D FFT (Multistage Network)

Figure 19 shows the computation and communication time for 2-D FFT as a function of number of proces-

sors. Figure 20 shows a blown-up graph for the communication times. The communication time is much smaller

than the computation time. Furthermore, the communication time also decreases as the number of processors (clus-

ters) increases. Also note that the intra-cluster communication time is much smaller than the inter-cluster communi-

cation time. Figure 21 shows percentage degradation in speedup, as defined in Equation (3), for different levels of

conflict in the network. The degradation in the speedup levels off after increasing initially because the communica-

tion time decreases as the number of processors increases.

Figure 22 shows the sensitivity of the speedup to the network bandwidth. The network bandwidth is normal-

ized to computation speed. For example, value 1 on the X-axis means that it takes the same amount of time (amor-

tized or in block transfer mode) to write/read a word to/from global memory as it takes to execute one instruction.

The region on the left of 1 indicates faster communication network, and to the right of 1 indicates slower communi-

cation network. It is evident from the Figure that degradation in speedup occurs very fast as the communication

becomes slower. Therefore, in order to obtain any significant speedups from parallel computation, it is important to

have matched computation and communication speeds; otherwise, increasing the number of processors or the pro-

cessor speeds will not improve the performance as expected. Figure 22 also illustrates that the four graphs diverge

as the communication becomes slower meaning that slower performance under heavy traffic suffers more in the
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Thefollowingis a discussion of the performance of 2D-FFT when a bus is used as a global interconnection

network. The algorithm is mapped as described above. Since global bus can be accessed by only one processors at a

time, the inter-cluster communication time becomes additive as the number of clusters is increased. Therefore,

performance is expected to be worse than that in the case of the multistage interconnection network. The total com-

putation time remains the same as in the previous case and is given by

12xN21og2(N)xtlt
tcp = P

However, the inter-cluster communication time becomes

(7)

i_-t 2xRxN 2 2xRx(n_l)xN 2

tic l = _ n 2 -- n2
i=l

(8)

In other words, each cluster needs to send xlt,n--.._.._..z._fraction of its data to transpose the intermediate results.
n

This is achieved by a designated processor in each cluster, which collects the data and broadcasts it on the bus to be

read by other cluster processors. Hence, there is an additional overhead of collecting and distributing the intermedi-

ate data. The intra-cluster communication time in this case is given by

ta =trtl +tot2 +tot3

where,

48-
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Speedup
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Figure 23 : Speedup for 2.D FFT (Global Bus)
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2x(Pc-1)xN 2

tel I ffi P_xn , for within cluster transpose, and

2xN2x(n-1), for sending, receiving and redistributing the intermediate data.
tel 2 = tel 3 = n2

Using these parameters, we evaluate the performance of 2-D FFT under varying degrees of conflicts on the

bus. Figure 23 shows the speedup for 2-D FFT as a function of the number of processors (cluster size 16). When

there is no conflict on the bus, the speedup incremes with the number of processors. However, under conflicts, the

speedup first decreases and then increases slowly. In fact, for medium and high conflicts, the speedup obtained on

one cluster is better than that obtained using multiple clusters. The reason for such poor performance is that even

though the communication is decomposable in 2-D FFT, the inter-cluster communication time becomes additive due

to the bus and increases as the number of clusters executing the algorithm increases as shown in Figure 24.

Figure 25 shows the relative performance degradation in the speedup. The degradation is very significant.

However, the degradation itself decreases as the number of processors (clusters) increases because more clusters

execute the algorithm, and consequently, less number of clusters interfere. Figure 26 shows the sensitivity of the

speedup to the bus speed. Again, the Figure shows that performance degrades rapidly as the bus becomes slower. In

order for a bus to be viable global interconnection network it is essential that the bus bandwidth be much greater
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4.2. Separable Convolution

This algorithm consists of two steps. First convolution along rows using two one-dimensional masks and then

convolution along columns of the intermediate results. Partitioning along rows in clusters, therefore, avoids com-

munication in the first step. However, before the second step can be performed, boundary rows with each cluster

need to be communicated to oth_ clusters. Figure 27 shows the mapping on three clusters. Note that unlike in 2-D

FFT, a cluster needs to communicate with at most two other clusters to obtain the upper and lower boundary rows of

the intermediate results. The number of rows to be exchanged depends on the kernel size. For a kernel size of

w
wxw, the number of rows to be exchanged along each direction is _-. The amount of communication is fixed and is

independent of the number of clusters on which the algorithm is mapped. The same mapping will work for regular

2-D convolution except that the amount of computation per pixel will be larger.

The computation time for the two steps is given by

2xt_xNx(2+l) (9)

tcpl =tcp2 = p

the intra-cluster communication is given by

tot = 2xNxw (10)

and, the inter-clustgr communication is given by

rid = 2x_><R (11)

Figure 28 depicts the speedup obtained for the separable convolution algorithm as a function of the number of

W_

C2

(a) Initial Mapping

along tows

Co) Boundary rows

into Global Memory

(c) Column Convolution

Clusters exchange top and bottom w/2 rows after row convolution

Figure 27 : An Example of Mapping Separable Convolution on Three Clusters

C1

.m

C2

C3
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clusters (cluster size = 16). The speedup increases sublinearly as the number of clusters increases. The reason for

not obtaining better speedup is that the computation per point of the input is small, and the computation per proces-

sor decreases as the number of clusters increases, but the communication remains constant (as long as the granular-

W

iv/per processor is at least _-- rows). Hence, the ratio of computation and communication decreases as the number

of processors increases. The computation and communication times are shown in Figures 29 and 30. Figure 29

compares the two times whereas Figure 30 shows only the communication time.

Note that inter-cluster communication can be avoided completely if clusters are assigned overlapped rows to

perform the first step. That is, if a cluster is responsible to compute the convolution for Ri rows, then its is assigned

w + Ri rows. Therefore, each cluster has to perform additional computation to obtain 1-D convolution of w addi-

tional rows. If the extra computation time is less than the communication time then overlapped data partitioning is

better.

Figure 31 shows a performance comparison of the two partitioning methods. When the number of processors

executing an algorithm is small, the performance is almost the same. For smaller window sizes the difference is

marginal and becomes apparent only when the number of processors becomes large. However, as the window size

increases (40x40 in Figure 31 ), the performance with overlapped computation becomes poor because the overhead
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of extra computation becomes larger than the communication overhead.

Figure 32 shows the performance of the algorithm when the bus is used as a global interconnection network.

The speedup increases as the number of clusters increases but eventually levels off. Though inter-cluster communi-

cation time per cluster is constant, total communication time increases as the number of clusters increases, because

only one cluster can send data on the bus at any time, This is illustrated in Figure 33 where the communication time

(with no interference) is a linear function of the number of clusters. Another reason for speedup to level off is that

for a larger number of clusters the computation time becomes comparable or smaller than the communication time.

4.3. Hough Transform

We have evaluated two mappings for hough transform, namely, Data Partitioning (DP) and Parameter Parti-

tioning (PP). The difference between the two mappings is described in section 2. Briefly, in DP the data is decom-

posed among clusters and in PP parameters are decomposed across clusters. In DP, Data is allocated to clusters in

proportion to their size. Within a cluster data is distributed equally among the processors. The algorithm consists of

three phases. In the first phase, each processor computes and accumulates the count contributed by its data for all

the parameter values. Note that each processor maintains the entire accumulator array. In the second phase, partial
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resultsarecombinedwithinacluster,i.e.,alltheaccumulatorarraysareaddedtogether,and thena designatedpro-

cessorfromeachclusterwritestheaccumulatorarraytodesignatedmemory locations.Arraysfromalltheclusters

participatinginthealgorithmexecutionarethencollectedby one cluster.Inthethirdphase,theclusterhavingthe

entireaccumulatorarraycomputesthelocalmaxima.

UnderPP,eachclusterisassignedtheentireinputdatabutisassignedonlyapartoftheparameterspace.The

parameterspaceispartitionedinproportiontotheclustersize.Eachclusterreceivestwo more parameters(boun-

daryvalues)sothatinter-clustercommunicationisavoided.Thatis,eachclusterperformsa fixedamountofadd/-

tional computation to avoid inter-cluster communication, Within a cluster, however, data is dislaibuted equally

among the processors, and all processors work on the entire allocated parameter space. Dividing the parameter

space results in mutually exclusive accumulator arrays with processors, and therefore, to compute local maxima,

there is no need for inter-cluster communication.

For DP, the computation and communication times for various phases are as follows: tcp 1 is for computing

accumulator count, tev2 is for combining partial accumulator arrays within a cluster, top3 is for computing the final

accumulator array, and tee4 gives fk_ time to compute the local maxima by one cluster.

3xt/rxN2x0e (12)
tcp 1= p
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tcp2= PcXecXlogzPc

(n-l)xpcxec

top3= Pc

3xpcxec

tCp4 -- Pc

InWa-clusterandinter-clustercommunicationtimesarcgiveby

td = (log2Pc + 1)xpcxOc

nxRxPpx0cxpc
rid-

Pc

Similarly, the corresponding computation and communication times for PP are given by

2 Oc
3xt xN +2)

%1= Pc

top2 = log2Pcxpcx( Oc + 2)
n

3xpcxOc

top3- nxPc

tot = (log2ec + 1)x( 0c + 2)xpc
n

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

Figure 34 depicts the speedups for hough transform using the two partitioning methods. Due to the communi-

cation overhead through global memory, which increases linearly with the number of clusters, the speedup for DP

levels off. Figure 35 shows the computation and communication times for hough transform, whereas Figure 36

shows the communication overhead for hough transform in detail. Data partitioning does not perform as well as

parameter partitioning. However, degradation with respect to best case speedup in DP is small. As we can observe,

good speedup can be obtained for a global data dependent algorithm like hough transform. Figure 35 and 36 illus-

trate the computation and communication times for the DP case.

Figure 37 shows the speedup for hough transform (DP), and Figure 38 depicts the communication and compu-

tation times, respectively when the bus is usedasa global interconnection network. Note that performance of the

hough transform under PP will be the same in both cases because there is no global communication.
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5. Summary

We presented performance evaluation of NETRA using several vision algorithms. The goal of this paper was

to illustrate the performance of components of NETRA using algorithms with varying characteristics and communi-

cation requirements. For each algorithm we presented one or more mapping strategies, its performance evaluation,

and a discussion of the results. The algorithms included 2-D FFT, convolution, separable convolution, hough

transform, sobel edge detection and median filtering.

To evaluate parallel algorithms on a cluster, we explore alternative mapping su'ategies and computation

modes. Some of the algorithms have been implemented on a simulated cluster and we show that the analysis pro-

vides very accurate results. We also discussed performance of the algorithms when they are mapped across multiple

clusters. The results are used to compare alternative inter-cluster communication strategies and they show that it is

possible to obtaingood performance for algorithms with different characteristics under varying degrees of conflicts

in global interconnection network.

In general, a multistage interconnection network as the global interconnecfion performs much better than a

global bus, as expected. The parameters chosen for processor speed and communication speed were very conserva-

five. We think that much faster processors and communication links are possible and available with current technol-

ogy, and therefore, the performance results presented in this chapter are also conservative. However, we obtained
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insight into the sensitivity of the performance measures as a function of various architecture parameters.
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